Exercise 51

Find the derivative of the function. Simplify where possible.

$$
y=\sin ^{-1}(2 x+1)
$$

Solution

Use the chain rule and the derivatives of the inverse trigonometric functions listed on page 214.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \sin ^{-1}(2 x+1) \\
& =\frac{1}{\sqrt{1-(2 x+1)^{2}}} \cdot \frac{d}{d x}(2 x+1) \\
& =\frac{1}{\sqrt{1-\left(4 x^{2}+4 x+1\right)}} \cdot(2) \\
& =\frac{2}{\sqrt{-4 x^{2}-4 x}} \\
& =\frac{2}{\sqrt{-4 x(x+1)}} \\
& =\frac{1}{\sqrt{-x(x+1)}}
\end{aligned}
$$

